首页> 外文OA文献 >Modelling spatio-temporally resolved air temperature across the complex geo-climate area of France using satellite-derived land surface temperature data
【2h】

Modelling spatio-temporally resolved air temperature across the complex geo-climate area of France using satellite-derived land surface temperature data

机译:使用卫星衍生的地表温度数据对法国复杂的地理气候区域中时空分解的气温进行建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Climate change has focused attention on the effects of changing temperature, particularly the effect on human health. Thus, robust and accurate spatially and temporally resolved air temperature (Ta) data are of particular importance in the field of epidemiology and public health. However, most health studies to date have matched people to the nearest monitor. In this study, we aimed to develop a robust satellite-based spatio-temporally resolved Ta estimation model across the complex geo-climatic regions of France resulting in daily high-resolution 1 km predicted air temperature (Tap) estimations. We use a daily calibration approach using a series of processes to generate daily Tap for every day across the entire study area and period. First, we start by calibrating MODIS (Moderate Resolution Imaging Spectroradiometer) satellite-gridded surface temperature (Ts) data against Ta collected within 1 km of the Ts centroid. The calibration stage adjusted for spatio-temporal predictors, as done in environmental exposure assessment methods such as land use regressions. Second, to estimate Tap when no Ts data are available we fit a second model which uses the association of predicted grid cells Tap values (based on satellite Ts) with surrounding Ta monitors and the association with values in neighbouring grid cells. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (overall mean out-of-sample R2 = 0.95 for both stages). In conclusion, we demonstrate how Ts can be used reliably to predict daily Tap at high-resolution across France for use in studies looking at the effects of fine resolution Ta exposure on various health outcomes.
机译:气候变化已将注意力集中在温度变化的影响上,尤其是对人类健康的影响。因此,在流行病学和公共卫生领域中,可靠且准确的时空分辨的气温(Ta)数据尤为重要。但是,迄今为止,大多数健康研究都将人们与最近的监护人匹配。在这项研究中,我们的目标是在法国复杂的地理气候地区建立一个基于卫星的时空分辨的Ta估计模型,该模型可产生每日1 km的高分辨率高分辨率气温(Tap)估计。我们使用每日校准方法,通过一系列过程在整个研究区域和整个期间每天生成每日Tap。首先,我们针对在Ts质心1公里内收集的Ta校准MODIS(中等分辨率成像光谱仪)卫星栅格表面温度(Ts)数据。校准阶段已针对时空预测因子进行了调整,如环境暴露评估方法(如土地利用回归)中所做的那样。其次,要在没有可用的Ts数据时估计Tap,我们拟合第二个模型,该模型使用预测的网格单元Tap值(基于卫星Ts)与周围的Ta监视器的关联以及与相邻网格单元中的值的关联。样本外十倍交叉验证用于量化我们预测的准确性。在有可用Ts的日子和没有Ts观测的日子,我们的模型性能都很出色(两个阶段的总体平均样本外R2 = 0.95)。总之,我们证明了Ts如何可以可靠地用于预测法国全天的高分辨率Tap,以用于研究精细Ta暴露对各种健康结果的影响的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号